节点文献

神经网络优化复合纳滤膜制备工艺的研究

Optimization of prepare conditions of composite nanofiltration membranes by artificial neural networks

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 刘臻袁其朋杜雪岭

【Author】 Liu Zhen Yuan Qipeng~* Du Xueling (State Key Laboratory of Chemical Resource Engineering,Beijing University of Chemical Technology,Beijing,100029,China)

【机构】 北京化工大学化工资源有效利用国家重点实验室北京化工大学化工资源有效利用国家重点实验室 北京化工大学75#信箱北京100029北京化工大学75#信箱北京

【摘要】 研究了利用神经网络优化复合纳滤膜制备工艺。以聚砜基膜和聚醚砜酮膜(PPESK)为例,首先,在实验数据的基础上建立并优化了神经网络模型,比较两种不同复合纳滤膜制备工艺的模拟结果与实验结果,充分证明神经网络的适用性和可信性;然后,利用神经网络的预测能力,优化聚砜基膜的制备工艺,确定最佳工艺条件:水相浓度0.6%,有机相浓度0.6%,有机相处理时间6 min。该法不仅可以减少实验成本,且能提供较可信的最优工艺条件,具有一定的实用价值。

【Abstract】 The purpose of this paper is to optimize the prepare conditions of composite nanfihration membranes.A mathematical model of the relationship between the process parameters and the membrane performance (salt rejection and flux) is established by using BP artificial neural networks.Firstly,the architecture of the ANN model is designed and optimized.By comparing the simulating results with experimental values,the applicability and creditability of the method is proved.Then the ANN is used to optimize the prepare con- ditions of the polysufone membrane.In the result,the optimal prepare condition is obtained:aqueous concentration 0.6%, non-aqueous concentration 0.6% and the immersion time 6 rain.The experimental results obtained from the ANN simulation are salt rejection 89.5%,flux 60.37 Lm-2h-1,which is better than the orthogonal experimental results:salt rejection 88.4%,flux 52.11 Lm-2h-1 It provide a new means for chemical technology optimization.

【基金】 国家自然科学基金(20176001)
  • 【文献出处】 计算机与应用化学 ,Computers and Applied Chemistry , 编辑部邮箱 ,2007年08期
  • 【分类号】TB383.2
  • 【被引频次】1
  • 【下载频次】133
节点文献中: 

本文链接的文献网络图示:

本文的引文网络