节点文献

流形上的Laplacian半监督回归

Laplacian Semi-Supervised Regression on a Manifold

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 杨剑王珏钟宁

【Author】 Yang Jian1,2,Wang Jue2,and Zhong Ning11(International WIC Institute,Beijing University of Technology,Beijing 100022)2(Institute of Automation,Chinese Academy of Sciences,Beijing 100080)

【机构】 北京工业大学国际WIC研究院中国科学院自动化研究所北京工业大学国际WIC研究院 北京100022中国科学院自动化研究所北京100080北京100080北京100022

【摘要】 把流形学习与半监督学习相结合,研究了流形上的半监督回归问题.简要介绍了半监督流形学习的Laplacian正则化框架,在此基础上推导了基于一类广义损失函数的Laplacian半监督回归,它能够利用数据所在流形的内在几何结构进行回归估计.具体给出了线性ε-不敏感损失函数,二次ε-不敏感损失函数和Huber损失函数的Laplacian半监督回归算法,在模拟数据和Boston Housing数据上对算法进行了实验,并对实验结果进行了分析.这些结果将为进一步深入研究半监督流形回归问题提供一些可借鉴的积累.

【Abstract】 Recently,manifold learning and semi-supervised learning are two hot topics in the field of machine learning.But there are only a few researches on semi-supervised learning from the point of manifold learning,especially for semi-supervised regression.In this paper,semi-supervised regression on manifolds is studied,which can employ the manifold structure hidden in datasets to the problem of regression estimation.Firstly the framework of Laplacian regularization presented by M.Belkin et al.is introduced.Then the framework of Laplacian semi-supervised regression with a class of generalized loss functions is deduced.Under this framework,Laplacian semi-supervised regression algorithms with linear ε-insensitive loss functions,quadric ε-insensitive loss functions and Huber loss functions are presented.Their experimental results on S-curve dataset and Boston Housing dataset are given and analyzed.The problem of semi-supervised regression on manifolds is interesting but quite difficult.The aim of this paper is only to accumulate some experience for further research in the future.There are still many hard problems on semi-supervised regression estimation on manifolds,such as constructing statistical basis of the algorithm,looking for better graph regularizer in the framework of Laplacian semi-supervised regression,designing quicker algorithms,implementing the algorithm on more datasets and so on.

【基金】 国家“九七三”重点基础研究发展规划基金项目(2004CB318103);国家自然科学基金项目(60575001,60673015)
  • 【文献出处】 计算机研究与发展 ,Journal of Computer Research and Development , 编辑部邮箱 ,2007年07期
  • 【分类号】TP301
  • 【被引频次】51
  • 【下载频次】900
节点文献中: 

本文链接的文献网络图示:

本文的引文网络