节点文献
Freezing osteoblast cells attached to hydroxyapatite discs and glass coverslips: Mechanisms of damage
【摘要】 Damage mechanisms for osteoblast cells (OBs) attached to hydroxyapatite (HA) discs and glass coverslips were comprehensively investigated. Cell-cell, cell-matrix interaction altered the cryobiological properties of cells. Attached cells were sub- ject to more severe mechanical damage than isolated cells because attached cells had larger contacting area with ice and the three dimensional movements of iso- lated cells made them more flexible than attached cells that could only deform in one dimension. Results showed that the viability of attached OB cells decreased significantly compared with the viability of isolated OB cells under the same cryo- preservation procedure. Extracellular ice, differential thermal contraction, and mechanical stresses were the major damaging factors for OB cells attached to HA discs and glass coverslips.
【Abstract】 Damage mechanisms for osteoblast cells (OBs) attached to hydroxyapatite (HA) discs and glass coverslips were comprehensively investigated. Cell-cell, cell-matrix interaction altered the cryobiological properties of cells. Attached cells were sub- ject to more severe mechanical damage than isolated cells because attached cells had larger contacting area with ice and the three dimensional movements of iso- lated cells made them more flexible than attached cells that could only deform in one dimension. Results showed that the viability of attached OB cells decreased significantly compared with the viability of isolated OB cells under the same cryo- preservation procedure. Extracellular ice, differential thermal contraction, and mechanical stresses were the major damaging factors for OB cells attached to HA discs and glass coverslips.
【Key words】 freezing; monolayers; attachment; differential thermal contraction; mechanical stress;
- 【文献出处】 Science in China(Series E:Technological Sciences) ,中国科学(E辑:技术科学)(英文版) , 编辑部邮箱 ,2007年02期
- 【分类号】TH789
- 【被引频次】14
- 【下载频次】35