节点文献

改进的粒子群算法及其在软测量建模中的应用

An Improved Particle Swarm Algorithm and Its Application in Soft Sensor Modeling

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 宁国忠孟科颜学峰钱锋

【Author】 NING Guo-zhong,MENG Ke,YAN Xue-feng,QIAN Feng (School of Information Science and Engineering,East China University of Science and Technology,Shanghai 200237,China)

【机构】 华东理工大学信息科学与工程学院华东理工大学信息科学与工程学院 上海200237上海200237

【摘要】 提出了一种改进的粒子群算法,很好地解决了基本粒子群算法中易陷入局部最优的缺点。通过比较和分析几个标准测试函数的计算结果,改进的粒子群算法的优良性得到充分的证明。改进的粒子群算法被用于优化神经网络的结构和参数,结果表明:不但网络的结构得到控制,而且泛化性能有了较大的提高。同时,算法在优化神经网络上的有效性也在4-CBA含量的软测量建模中得到了很好的证实。

【Abstract】 An improved PSO(particle swarm optimization) algorithm is presented which well addresses slow convergence speed and low calculation precision in the basic PSO algorithm.By comparing and analyzing the results of several standard test functions,the excellent performance of PSO is proved.Then,the improved PSO is applied to optimization of the structure and parameters in NN(neural network).The availability of algorithm in optimizing neural network is proved by applying NN in soft sensor modeling of 4-CBA measurement.

【基金】 国家自然科学基金项目(20506003);上海启明星项目(04QMX1433);教育部科学技术研究重点项目(106073);国家杰出青年基金(60625302);国家973计划基金(2002CB3122000)
  • 【文献出处】 华东理工大学学报(自然科学版) ,Journal of East China University of Science and Technology(Natural Science Edition) , 编辑部邮箱 ,2007年03期
  • 【分类号】TP274
  • 【被引频次】14
  • 【下载频次】255
节点文献中: 

本文链接的文献网络图示:

本文的引文网络