节点文献

基于改进BP神经网络的地下水环境脆弱性评价

Modified BP neural network-based groundwater environmental vulnerability evaluation

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 李梅孟凡玲李群黄强

【Author】 LI Mei1,2,MENG Fan-ling3,LI Qun1,2,HUANG Qiang1(1.School of Hydraulic and Electrical Engineering,Xi’an University of Technology,Xi’an 710048,China;2.The Yellow River Water Conservancy Committee,Zhengzhou 450003,China;3.School of Resource and Environment of North China University of Water Conservancy and Hydroelectric Power,Zhengzhou 450011,China)

【机构】 西安理工大学水利水电学院华北水利水电学院资源与环境学院西安理工大学水利水电学院 陕西西安710048黄河水利委员会河南郑州450003河南郑州450011陕西西安710048

【摘要】 地下水环境脆弱性具有模糊特性,现有的地下水环境脆弱性评价方法普遍采用加权评分法和模糊数学方法.加权评分法在评价因素权重的确定上人为性较大,并且该方法不能反映各评价因素指标值的连续变化对地下水环境脆弱性的影响;模糊数学方法在评价因素权重的确定和隶属度函数的构建上存在着不足.为此,建立了地下水环境脆弱性的改进BP神经网络模型.黄淮平原宁陵县的应用结果表明,改进BP神经网络法训练速度快、精度高,能较好地解决非线性的模式识别问题,如实地评价地下水环境的脆弱性.

【Abstract】 The weight grade method and fuzzy mathematic method are commonly used for groundwater environmental vulnerability evaluation due to its fuzziness.However,the weight grade method is affected by some artificial factors in determining the weights of different evaluation factors,and the method cannot reflect the influences of the continuous changes of evaluation factors on the vulnerability of groundwater environment.Meanwhile,the fuzzy mathematic method is of some disadvantages in determining the weights of evaluation factors and establishment of the function of subordination degree.Thus,a modified BP neural network model was established for groundwater environmental vulnerability evaluation.The application of the model to Ningling County in Huang-Huai Plain shows that the modified BP neural network is of fast speed and high accuracy in nonlinear mode identification and can provide correct evaluation of groundwater environmental vulnerability.

【基金】 国家“973”重点基础研究发展规划项目(G1999043608);陕西省重点实验室项目(02JS37)
  • 【文献出处】 河海大学学报(自然科学版) ,Journal of Hohai University(Natural Sciences) , 编辑部邮箱 ,2007年03期
  • 【分类号】X824
  • 【被引频次】41
  • 【下载频次】619
节点文献中: 

本文链接的文献网络图示:

本文的引文网络