节点文献

基于智能融合策略的冰铜品位预测模型

Prediction Model of Copper Matte Grade Based on Intelligent Fusion Strategy

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 王凌云桂卫华彭晓波

【Author】 WANG Ling-yun,GUI Wei-hua,PENG Xiao-bo(School of Information Science and Engineering,Central South University,Changsha 410083,China)

【机构】 中南大学信息科学与工程学院中南大学信息科学与工程学院 长沙410083长沙410083

【摘要】 针对铜闪速熔炼过程中冰铜品位检测的重要性,根据多相多组分数学模型建立冰铜品位的机理模型;同时该过程具有大滞后、非线性等复杂特性,利用现场的大量生产数据建立模糊神经网络模型,并提出一种新的网络参数学习的受约束梯度下降算法,提高其参数学习效率。基于模糊逻辑的智能协调器根据实际生产条件融合两种模型的输出作为预测结果。工业数据验证表明,智能融合模型比单一模型更能有效地实现冰铜品位的准确预测,为铜闪速熔炼过程的优化控制提供有力的指导。

【Abstract】 Due to the importance of detecting the copper matte grade in the copper flash smelting process,the mechanism model was established according to the multiphase and multi-component mathematic model.The fuzzy neural network model was set up through a great deal of production data.A constrained gradient descent algorithm which was used to update the parameters was put forward and the learning efficiency was improved.An intelligent coordinator based on fuzzy logic is proposed to synthesize the output of two models as the prediction result according to the practical conditions.Industrial data validation shows that the intelligent fusion model can predict the copper matte grade more effectively compared to the single model and provide optimal control of the copper flash smelting process with potent guidance.

【基金】 国家自然科学基金资助项目(60634020);国家“973”计划项目(2002CB312200)
  • 【文献出处】 化工自动化及仪表 ,Control and Instruments in Chemical Industry , 编辑部邮箱 ,2007年04期
  • 【分类号】TP273
  • 【被引频次】9
  • 【下载频次】113
节点文献中: 

本文链接的文献网络图示:

本文的引文网络