节点文献
二阶离散周期边值问题的正解
Positive solutions to second-order discrete periodic boundary value problems
【摘要】 考虑如下周期边值问题:-Δ[p(n-1)Δy(n-1)]+q(n)y(n)=f(n,y(n)),n∈[1,N],y(0)=y(N),p(0)Δy(0)=p(N)Δy(N).其中{y(n)}nN=+01是一个期望解.运用锥不动点定理,给出了二阶离散周期边值问题正解的新的存在性定理.
【Abstract】 In this paper,the consider the following periodic boundary value problem:-Δ[p(n-1)Δy(n-1)]+q(n)y(n)=f(n,y(n)),n∈,y(0)=y(N),p(0)Δy(0)=p(N)Δy(N).where{y(n)}N+0n=0 is a desired solution.This paper presents a new existence theory for positive solutions to a kind of second-order discrete periodic boundary value problems by employing a fixed point theorem in cones.
【关键词】 周期边值问题;
离散区间;
存在性;
正解;
锥不动点定理;
【Key words】 periodic boundary value problem; discrete segment; existence; positive solution; fixed point theorem in cone.;
【Key words】 periodic boundary value problem; discrete segment; existence; positive solution; fixed point theorem in cone.;
【基金】 国家自然科学基金资助项目(10571021)
- 【文献出处】 东北师大学报(自然科学版) ,Journal of Northeast Normal University(Natural Science Edition) , 编辑部邮箱 ,2007年02期
- 【分类号】O175.8
- 【被引频次】4
- 【下载频次】56