节点文献

ICO多学科设计优化方法

ICO multidisciplinary design optimization method

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 韩明红

【Author】 Han Minghong(School of Mechanical Engineering and Automation,Beijing University of Aeronautics and Astronautics,Beijing 100083,China)

【机构】 北京航空航天大学机械工程及自动化学院 北京100083

【摘要】 协同优化(CO,Collaborative Optimization)算法在应用中存在计算困难的问题.分析了引起CO算法计算困难的原因;使用L1范数改进了CO算法的学科一致性约束,避免了学科级目标函数导数的不连续性,并从数学理论上证明了改进的学科一致性约束的收敛性;增加系统级罚函数,使系统级优化问题转化为无约束优化问题;使用快速启动方法,在子系统级优化过程中充分合理利用系统级优化求得的最优解;给出了使用改进的学科一致性约束、系统级罚函数和快速启动方法的ICO(Improved Collaborative Optimization)多学科设计优化方法,较好地克服了CO算法存在计算困难的缺点.标准算例实验结果表明,ICO多学科设计优化方法有效提高了算法的稳定性、可靠性和计算效率.

【Abstract】 Some serious computational difficulties are found in application of collaborative optimization(CO).Reasons that cause computational difficulties in CO were analyzed.The L1 norm was used to improve subsystem consistency constraint and to avoid discontinuities in subsystem object function derivatives.Mathematical theory proved the convergency of the improve subsystem consistency constraint.Penalty function was added to system-level object function to convert unconstrained optimization into constrained optimization.A quick-start strategy was used to make the best use of optimal solution of system-level optimization in subsystem-level optimization.A new improved collaborative optimization(ICO) method was presented.Improved subsystem consistency constraint,system-level penalty function,and the quick-start strategy were used in ICO.These measures overcome the computational difficulties of CO better.Experiment results show that the robustness,reliability and computing efficiency of ICO are higher than those of CO.

【基金】 国家自然科学基金资助项目(50275005);国防基础科研资助项目(K1203010804)
  • 【文献出处】 北京航空航天大学学报 ,Journal of Beijing University of Aeronautics and Astronautics , 编辑部邮箱 ,2007年08期
  • 【分类号】N941
  • 【被引频次】10
  • 【下载频次】349
节点文献中: 

本文链接的文献网络图示:

本文的引文网络