节点文献
基于多特征的自适应新词识别
Adaptive Method for Chinese New Word Identification Based on Multi-features
【摘要】 为提高自动分词系统对未登录词的识别性能,提出和实现了一种基于多特征的自适应新词识别方法,综合考虑了被处理文本中重复字符串的上下文统计特征(上下文熵)、内部耦合特征(似然比)、背景语料库对比特征(相关频率比值)以及自动分词系统辅助的边界确认信息等,并直接从被抽取文本中自动训练识別模型.同时,新词识别过程在字串PAT-Array数据结构上进行,可以抽取任意长度的新词语.实验结果表明,该方法新词发现速度快、节省存储空间.
【Abstract】 To improve the performance of new word identification in Chinese word segment,the authors pro- pose an adaptive method for Chinese new word identification based on multi-feature method for off line corpus processing,in which many features,including context-entropy,likelihood ratios,frequency ratio against background corpus and boundary-verification with basic segmentation are introduced to evaluate the candidate words.And all of the features are integrated into an adaptive SVM classifier.Candidate new words are extracted efficiently on PAT-Array with much less space overhead and arbitrary n-gram words can be identi- fied by the method.The results show that the method can run fast upon new word identification and save much memory.
【Key words】 natural language processing system; computational linguistics; word processing; new word identification; multi-features; adaptation; word segmentation;
- 【文献出处】 北京工业大学学报 ,Journal of Beijing University of Technology , 编辑部邮箱 ,2007年07期
- 【分类号】TP391.43
- 【被引频次】45
- 【下载频次】539