节点文献
奇异拟线性椭圆方程的正整体有界解
Entirely Bounded Positive Solutions of Singular, Quasilinear Elliptic Equations
【摘要】 设β≥0是常数,f:RN×R+×RN→RN是一个连续函数.本文研究形如△u+f(x,u,▽u)u-β=0,x∈RN(N≥3)的奇异拟线性椭圆方程的正整体解,给出了该类方程具有界的正整体解的若干充分条件.
【Abstract】 Supposeβ≥0 are constant,f: RN×R+×RN→R is a continuous function. This paper investigates N-dimensional singular, quasilinear elliptic equations of the form△u=f(x,u,▽u)u-β, x∈RN and gives some sufficient conditions such that the equations have infinitely many entire solutions each of which is bounded and positive.
【关键词】 奇异;
拟线性椭圆方程;
正整体解;
不动点定理;
上解;
下解;
【Key words】 singular; quasilinear elliptic equation; positive entke solutions; fixed point theorem; supersolution; subsolution;
【Key words】 singular; quasilinear elliptic equation; positive entke solutions; fixed point theorem; supersolution; subsolution;
【基金】 国家自然科学基金资助课题(10271056);漳州师院基金资助课题.
- 【文献出处】 漳州职业技术学院学报 ,Journal of Zhangzhou Technical Institute , 编辑部邮箱 ,2006年04期
- 【分类号】O175.25
- 【被引频次】2
- 【下载频次】14