节点文献

基于MRI海马形状特征的阿尔茨海默病的自动判别

Automatic discrimination of Alzheimer’s disease from normal aging based on MRI hippocampal shape analysis

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 李淑宇石峰蒲放蒋田仔谢晟王荫华

【Author】 LI Shu-yu~1, SHI Feng~2, PU Fang~1, JIANG Tian-zi~ 2* , XIE Sheng~3, WANG Yin-hua~4 (1.Department of Bioengineering, Beihang University, Beijing 100083, China; 2.National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100080, China; 3.Department of Radiology, 4.Department of Neuropsychology, Peking University First Hospital, Beijing 100034, China)

【机构】 北京航空航天大学生物工程系中科院自动化所模式识别国家重点实验室北京大学第一医院放射科北京大学第一医院神经内科 北京100083北京100080北京100083北京100034

【摘要】 目的通过海马的MRI影像学分析,研究阿尔茨海默病(AD)患者海马形状的局部异常模式,并构建最优的分类器函数辅助诊断AD。方法对19例AD患者和20名正常老年对照者行MRI扫描,建立海马表面模型,测量海马表面的局部萎缩,构建分类器函数自动判别AD病。结果自动判别的正确率,用留一法交叉验证实验的平均正确率分别为右海马82.1%,左海马92.3%;100次3重交叉验证实验的平均正确率为右海马82.5%,左海马87.2%。结论利用MRI海马的形状特征自动判别AD是可行的。

【Abstract】 Objective Based on the MRI hippocampal shape analysis, to study the regional pattern differences between Alzheimer’s disease (AD) and normal aging, and build effective classifiers to assist the diagnosis of AD. Methods Conventional MRI were performed in 19 AD patients and 20 age- and gender-matched healthy controls. Then hippocampal surface models were constructed and regional surface deformations were characterized by surface-based measures. Finally, effective classifiers were built to discriminate AD from normal aging. Results The accuracy of automatic recognition were 82.1% and 92.3% by using leave-one-out cross-validation, and similarly the average accuracy of randomized 3-fold cross-validation by 100 times were 82.5% and 87.2% resulted by right and left hippocampus respectively. Conclusion Hippocampal shape analysis is effective for the automatic recognition of AD.

【基金】 国家自然科学基金资助项目(60121302,10372065)。
  • 【文献出处】 中国医学影像技术 ,Chinese Journal of Medical Imaging Technology , 编辑部邮箱 ,2006年09期
  • 【分类号】R445.2;R749.1
  • 【被引频次】3
  • 【下载频次】266
节点文献中: 

本文链接的文献网络图示:

本文的引文网络