节点文献

径向基函数人工神经网络预测污水处理厂出水水质

Predication of wastewater treatment plant effluent quality using radial basis function neural network

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 胡坚严敏刘俊萍王亚宜

【Author】 HU Jian~1,YAN Min~2,LIU Jun-ping~2,WANG Ya-yi~2(1.Division of Sewerage Management,Zhenjiang Water Industry Company,Zhenjiang 212001,China;2.College of Architecture & Civil Engineering,Zhejiang University of Technology,Hangzhou 310032,China)

【机构】 镇江市水业总公司排水管理处浙江工业大学建筑工程学院浙江工业大学建筑工程学院 江苏镇江212001浙江杭州310032

【摘要】 根据人工神经网络的理论和方法,建立了径向基函数神经网络模型.用镇江市征润州污水处理厂的实测数据进行模型训练和预测水质验证,采用最近邻聚类学习算法选取聚类中心,表明模型有较强非线性处理能力和逼近能力,并具有学习时间短,网络运算速度快,性能稳定等优点.通过模型预测结果和实测值的比较,发现用径向基函数神经网络模型预测污水出水水质,具有预测精度高,使用方便,适应性强等优点,因此可望将其用于污水厂出水水质的预测.

【Abstract】 The Radial Basis Function Neural Network model for predicting wastewater treatment plant effluent quality is established based on the theory and methodology of neural network.The data obtained from wastewater treatment plant were used to train and verify the model.The model demonstrates its capability to approach function and treat non-linear problem by using nearest neighbor cluster algorithm to select the clustering center.The main advantage of the RBF based model is its accuracy,time saving,fast running and stability behavior.The good agreement between predicted and measured data was observed.Because of these benefits,it is believed that the model could find application in predicting wastewater treatment plant effluent quality.

  • 【文献出处】 浙江工业大学学报 ,Journal of Zhejiang University of Technology , 编辑部邮箱 ,2006年06期
  • 【分类号】TU992
  • 【被引频次】17
  • 【下载频次】331
节点文献中: 

本文链接的文献网络图示:

本文的引文网络