节点文献

基于复合余弦基神经网络的图像去噪滤波器

Compound-cosine-basis neural network filter for removing image noise

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 陈杨生颜钢锋

【Author】 CHEN Yang-sheng,YAN Gang-feng (College of Electrical Engineering,Zhejiang University,Hangzhou 310027,China)

【机构】 浙江大学电气工程学院浙江大学电气工程学院 浙江杭州310027浙江杭州310027

【摘要】 针对图像受噪声干扰问题,提出了一种基于复合余弦基神经网络的图像去噪低通滤波器,以及保证该神经网络算法收敛的收敛定理,并给出了证明.该方法通过复合余弦基神经网络对幅频响应训练,调整网络权值,控制总的能量函数在给定的极小范围内,使得实际滤波器特性逼近理想图像去噪低通滤波器特性,从而达到满意的去噪效果.仿真结果显示,复合余弦基神经网络图像去噪滤波器各项特性接近理想滤波器.与传统的图像滤波器去噪方法比较,该方法设计的图像去噪滤波器具有更好的去噪效果.

【Abstract】 A 2-D lowpass filter based on the compound-cosine-basis neural network(CNNL) was proposed to overcome the defects of conventional methods for removing image noise,and the convergence theorem which ensures that this algorithm is convergent was presented.This method manages to have the characteristics of the real filters and approach the characteristics of the ideal lowpass filters for removing image noise through the training of the compound-cosine-basis neural network,which adjusts the weight of the network along with the training,so that the energy function is less than the infinitesimal,then good results of removing image noise could be attained.The simulation results reached nearly ideal filter characteristics,and the performance of removing image noise using this filter was compared with the median filter.The experimental results showed that the effect of this method for removing image noise is better.

  • 【文献出处】 浙江大学学报(工学版) ,Journal of Zhejiang University(Engineering Science) , 编辑部邮箱 ,2006年08期
  • 【分类号】TN911.73
  • 【被引频次】3
  • 【下载频次】140
节点文献中: 

本文链接的文献网络图示:

本文的引文网络