节点文献

小波神经网络在基桩缺陷诊断分析中的应用

Application of Wavelet and Neural Network to Defect Diagnosing of Piles

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 潘冬子程升明唐颖栋

【Author】 Pan Dongzi~1 Cheng Shengming~2 Tang Yingdong~3(~1 College of Civil Engineering and Architecture,Zhejiang University Hangzhou,310027,China)(~2 Shanghai Investigation Design & Research Institute Shanghai,200434,China)(~3 Zhejiang Environmental Science Institute Hangzhou,310007,China)

【机构】 浙江大学建筑工程学院上海勘测设计研究院浙江省环境保护科学设计研究院 杭州310027上海200434杭州310007

【摘要】 将小波分析作为神经网络的前置处理手段,从基桩动测信号小波变换的分量中提取特征,然后将这些特征输入人工神经网络进行训练和分类,进而实现基桩缺陷位置和程度的诊断。仿真试验的结果表明,该方法对桩身完整性的评价是快速有效的,特别是对于多个缺陷的判别较其他方法具有优越性,在此基础上进行了模型桩的现场试验研究。

【Abstract】 A diagnostic method for defects in piles combing with the advantage of wavelet and neural network is presented in this paper.As a fore processing medium,wavelett transform method is used to extract the characteristics which reflect the information of defects.These characteristics are fed into the neural network as the input patterns for training and classifying.Farther,it can be used to diagnose the location and magnitude of defects.The results of simulated test indicated that this method can be applied to the identification and diagnosis of defects with high efficiency and accuracy,especially for testing of the piles which contains more than one defect.The field tests verify the feasibility of the method.

  • 【文献出处】 振动、测试与诊断 ,Journal of Vibration, Measurement & Diagnosis , 编辑部邮箱 ,2006年03期
  • 【分类号】TU753.3;TP183
  • 【被引频次】9
  • 【下载频次】138
节点文献中: 

本文链接的文献网络图示:

本文的引文网络