节点文献
一类变形的Boussinesq方程组的行波解分支
Bifurcations of Travelling Wave Solutions in Variant Boussinesq Equations
【摘要】 在Boussinesq方程组求解方面,用平面动力系统的分支理论研究了一类变形的Boussinesq方程组的行波解分支.得到了不同参数条件下的分支集、相图及所有孤立波和扭波的精确公式.
【Abstract】 The bifurcations of solitary waves and kink waves for variant Boussinesq equations were studied by using the bifurcation theory of planar dynamical systems.The bifurcation sets and the numbers of solitary waves and kink waves for the variant Boussinesq equations are presented.Several types explicit formulas of solitary wave solutions and kink wave solutions are obtained.In the end,several formulas of periodic wave solutions are presented.
【关键词】 Hamilton系统;
Boussinesq方程组;
分支;
孤立行波;
扭波;
【Key words】 Hamiltonian system; Boussinesq equation; bifurcation; solitary wave solution; kink wave solutions;
【Key words】 Hamiltonian system; Boussinesq equation; bifurcation; solitary wave solution; kink wave solutions;
【基金】 四川省应用基础研究计划资助项目(05JY029-068-2)
- 【文献出处】 应用数学和力学 ,Applied Mathematics and Mechanics , 编辑部邮箱 ,2006年06期
- 【分类号】O175.14
- 【被引频次】7
- 【下载频次】100