节点文献
关于图的距离标号问题
The Distance Labeling Problem on Graphs
【摘要】 图G的L(2,1)-标号是一个从顶点V(G)集到非负整数集的函数f(x),使得若d(x,y)=1,则|f(x)-f(y)|≥2;若d(x,y)=2,则|f(x)-f(y)|≥1。图G的L(2,1)-标号数λ(G)是使得G有max{f(v):v∈V(G)}=k的L(2,1)-标号中的最小数k。本文将L(2,1)-标号问题推广到更一般的情形即L(d1,d2,d3)-标号问题,并得出了复合图的λd1,d2,d3(G)的上界。
【Abstract】 An L(2,1)-labeling of a graph G is a function f from the vertex set V(G) to the set of all nonne-gative integers so that |f(x)-f(y)|≥2 if d(x,y)=1 and |f(x)-f(y)|≥1 if d(x,y)=2.TheL(2,1)-labeling number λ(G) of G is the smallest number k so that G has an L(2,1)-labeling with max{f(v):v∈V(G)}=k.We extend the L(2,1)labeling to the L(d1,d2,d3)-labeling and derive the upper bounds of λd1,d2,d3(G) of composition graph.
【关键词】 运筹学;
频率分配;
T-染色;
L(2,1)-标号;
【Key words】 operations research; frequency assignment; T-coloring; L(2,1) labeling.;
【Key words】 operations research; frequency assignment; T-coloring; L(2,1) labeling.;
- 【文献出处】 运筹与管理 ,Operations Research and Management Science , 编辑部邮箱 ,2006年04期
- 【分类号】O157.5
- 【下载频次】63