节点文献
一种非正交复小波核函数及其非线性参数辨识应用
A Kind of Non-orthogonal Complex Wavelet Kernel Function and Its Application in Nonlinear System Parameters Identification
【摘要】 指出了非线性动态信号参数辨识的重要性;分析了目前采用的方法的不足;对非正交复Morlet小波满足Mercy条件和再生性的命题作了证明;用复Morlet小波构建出一种核函数,与主分量分析方法相结合,对非线性动态信号进行参数辨识和预测;仿真结果验证了该方法的正确性和有效性,表明该方法具有较好的理论价值和实用价值。
【Abstract】 The important value of non-linear dynamical signal parameters identificaton was pointed. The shortcomings of current methods were analyzed. It was provedthat non-orthogonal complex Morlet wavelet could satisfy Mercy Condition and have reproduction character in Hilbert Space. A kind of special kernel function was built, which was named Non-orthogonal Complex Morlet Wavelet Kernel Function, combined with Principal Component Analysis (PCA), and identified parameters and forcasted future information of non-linear dynamic signal. Contrast experiment results show that this kind of kernel function seems to be the most promising one and has some more applied value in this area.
【Key words】 Non-orthogonal Complex Morlet Wavelet; Principal Component Analysis (PCA); Kernel Function Method; Nonlinear Dynamical Signal; Parameter Identification;
- 【文献出处】 系统仿真学报 ,Journal of System Simulation , 编辑部邮箱 ,2006年09期
- 【分类号】TN911.6
- 【被引频次】14
- 【下载频次】209