节点文献

基于外积FLNN的非线性系统辨识

Nonlinear Dynamic System Identification Using Functional Link Artificial Neural Networks

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 李萍吴乐南

【Author】 (Department of Radio Engineering, SEU,NanJing, 210096,China) Li,Ping Wu,Lenan (LuoHe Vocational and Technical College, LuoHe, 462000,China)

【机构】 东南大学无线电工程系东南大学无线电工程系 210096江苏南京漯河职业技术学院462000河南漯河210096江苏南京

【摘要】 函数型连接神经网络通过对输入模式预先进行非线性扩展,增强了输入信号的模式表达,从而大大简化网络结构,降低计算复杂度。本文提出一种外积扩展型连接神经网络,用于辨识幂函数非线性系统,并与MLP和CFLNN网络对比,仿真结果表明,外积型辨识幂函数非线性系统结构简单、计算量低、性能最优。

【Abstract】 A functional link neural network can expand its input pattern to eliminate the need of hidden layer without sacrifice its performance. Thus the network structure and the computational complexity can be remarkably reduced. In this paper, a muti- extend- ed link neural network is introduced in identification of power function nonlinear system. It is contrasted with MLP and CFLNN net- work and simulation result indicates that its structure is very simple and its computational complexity is low.

【基金】 国家自然科学基金资助项目(60472054)
  • 【分类号】N945.14
  • 【下载频次】95
节点文献中: 

本文链接的文献网络图示:

本文的引文网络