节点文献

前馈神经网络复值盲均衡算法的研究

The Research of the Complex-valued Blind Equalization Algorithm Beased on the Feedforward Neural Network

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 张晓琴张富强侯永兴张立毅王华奎

【Author】 ZHANG Xiao-qin~1,ZHANG Fu-qiang~2,HOU Yong-xing~1,ZHANG Li-yi~1,WANG Hua-kui~1(1.College of Information Engineering of TUT,Taiyuan 030024,China;2.The Medium Wave Station of Xinzhou,Xinzhou 034000,China)

【机构】 太原理工大学信息工程学院忻州市中波台太原理工大学信息工程学院 山西太原030024山西忻州034000山西太原030024

【摘要】 提出了一种新的前馈神经网络(N-FNN)复值盲均衡算法。新算法改变了传统均衡技术大量发送训练序列而降低系统传输的有效信息率,有效地消除码间干扰,提高了通信质量。笔者设计出新的传递函数和代价函数,利用最陡梯度下降法推导出输出层和隐层单元权值的迭代公式。通过对QAM信号进行计算机仿真,笔者提出的新算法与同类算法相比,具有均方误差收敛速度加快、误码率降低、稳态剩余误差减小等优点

【Abstract】 In this paper,a new complex-valued blind equalization algorithm based on the feedforward neural network(N-FNN) is proposed.Because the traditional equalization technology requests to transmit the training sequence constantly,the effective information rate of the system is low.The new algorithm has changed this status.It can eliminate Intersymbol Interference(ISI) effectively and improve the communication quality.The new transmission function and cost function are designed in this paper.At the same time,weight iteration formula of the output layer and hidden layer are deduced using the steepest descent method.Results of the simulation for QAM signals show that the proposed algorithm has faster mean square error convergence speed,and lower bit error rate,smaller steady state mean square error than the other similar algorithms.

【基金】 山西省自然科学基金资助项目(20051038)
  • 【文献出处】 太原理工大学学报 ,Journal of Taiyuan University of Technology , 编辑部邮箱 ,2006年03期
  • 【分类号】TP183;TN911.5
  • 【被引频次】2
  • 【下载频次】106
节点文献中: 

本文链接的文献网络图示:

本文的引文网络