节点文献
基于BP神经网络的电控LPG-柴油双燃料内燃机碳烟排放的预测
Emissions Prediction for Electronically Controlled LPG-diesel Engine Based on Back Propagation Neural Network
【摘要】 建立了一个基于BP神经网络的碳烟排放模型,用它来预测电控LPG-柴油双燃料的碳烟排放。模型将转速、油泵齿条位置、油门开度、LPG喷气时间、冷却水温度、转矩作为输入变量。本文采用准牛顿反向传播算法,对试验样本数据进行训练,并对此模型进行了泛化检验,将预测结果与试验结果进行了比较。此排放模型可以指导双燃料内燃机的排放性能优化试验,减少试验工作量。
【Abstract】 Based on the BP neural network,this paper established a particulate emission model for the electronically controlled LPGdiesel dual fuel engine.This model took the parameters of engine speed,fuel pump rack position,pedal,LPG(injection) time,cooling water temperature and torque as the input variables.Using BFGS arithmetic to train the experimental data and verify the extensive ability of the model,the comparison between the prediction and experimental data was carried out.The emission model can be used to guide the experimentation of emission performance optimization and to reduce the(experimental) workload.
【Key words】 LPG-diesel dual fuel engine; BP neural network; Emission model; BFGS;
- 【文献出处】 拖拉机与农用运输车 ,Tractor & Farm Transporter , 编辑部邮箱 ,2006年04期
- 【分类号】TK40
- 【被引频次】2
- 【下载频次】114