节点文献
A Numerical Simulation Study of Typhoon Rananim(0414)
【摘要】 <正>Using the high-resolution non-hydrostatic model ARPS (Advanced Regional Prediction System),the Typhoon Rananim (0414) was simulated by using the CINRAD Doppler radar data.The results before and after typhoon landfall show that model ARPS performs well to simulate the track,the variation of center pressure,as well as severe heavy rain of Rananim.Meanwhile,the simulated composite reflectivity was compared with the observed radar composite reflectivity.The numerical results reveal that the asymmetrical structure of Rananim plays an important role in its westward deflecting after landfall.The sensitivity simulation experiments of terrain effects on Rananim (0414) were also investigated,and the terrain of the southeastern China has important effects on Rananim turning right slightly of its track and increasing its intensity obviously,but when typhoon is far away from the coastline,the terrain only impacts slightly on the storm intensity during its landfall.The results show that topographic lifting contributes greatly to precipitation enhancement,and makes the distribution of precipitation more uneven.
【Abstract】 Using the high-resolution non-hydrostatic model ARPS (Advanced Regional Prediction System),the Typhoon Rananim (0414) was simulated by using the CINRAD Doppler radar data.The results before and after typhoon landfall show that model ARPS performs well to simulate the track,the variation of center pressure,as well as severe heavy rain of Rananim.Meanwhile,the simulated composite reflectivity was compared with the observed radar composite reflectivity.The numerical results reveal that the asymmetrical structure of Rananim plays an important role in its westward deflecting after landfall.The sensitivity simulation experiments of terrain effects on Rananim (0414) were also investigated,and the terrain of the southeastern China has important effects on Rananim turning right slightly of its track and increasing its intensity obviously,but when typhoon is far away from the coastline,the terrain only impacts slightly on the storm intensity during its landfall.The results show that topographic lifting contributes greatly to precipitation enhancement,and makes the distribution of precipitation more uneven.
【Key words】 ARPS; numerical simulation; Typhoon Rananim; heavy rain; terrain;
- 【文献出处】 Acta Meteorologica Sinica ,气象学报(英文版) , 编辑部邮箱 ,2006年04期
- 【分类号】P444
- 【被引频次】1
- 【下载频次】40