节点文献
基于事务压缩的频繁项集挖掘和更新算法
An Algorithm for Renewing Frequent Item Sets Based on Redundant Transaction Compression idea
【摘要】 频繁项集挖掘是挖掘关联规则的关键。为了得到用户感兴趣的关联规则,要不断调整最小支持度,这必将引起频繁项集的更新。基于事务压缩思想,提出一种挖掘和更新算法,挖掘频繁项集时扫描压缩的数据库,更新时能减少新产生的k-项集的数量,从而加快了更新速度。
【Abstract】 Finding frequent item sets is the key to mine association rules.The paper should adjust the threshold values with minimum support in order to get users interested rules,and that must lead to the revising of thresholds.It proposes an algorithm for data mining and revising of thresholds based on redundant transaction compression,it scans the reduced database when mining the frequent item sets,and it can reduce the amounts of k-frequent item sets when updataing it.so it speeds up the renewing speed.
- 【文献出处】 南昌大学学报(理科版) ,Journal of Nanchang University(Natural Science) , 编辑部邮箱 ,2006年05期
- 【分类号】TP311.13
- 【被引频次】1
- 【下载频次】72