节点文献
黏弹性板的大挠度蠕变屈曲
CREEP BUCKLING OF VISCOELASTIC PLATES WITH GEOMETRICAL NONLINEARITY
【摘要】 研究了具有初始小挠度受轴向压载黏弹性板的蠕变屈曲问题,在建立控制方程时,利用了von Karman 非线性应变-位移关系,并考虑了初始挠度,用标准线性固体模型描述材料的黏弹性特性,在求解非线性积分方程时,利用梯形公式计算记忆积分式,将非线性积分方程化为非线性代数方程进行数值求解,得到了结构的蠕变变形过程.又将问题退化到小挠度情况进行研究,得到了挠度随时间扩展的解析解,分析了瞬时失稳临界载荷、持久临界载荷的物理意义.讨论了考虑几何非线性对黏弹性板蠕变屈曲的影响.
【Abstract】 The creep buckling behavior of viscoelastic plates with initial deflections, subjected to axial com-pressive force, is analyzed. The von Karman nonlinear geometry equations are introduced in the thesis and standard linear solid model is employed. In order to change the nonlinear integral equations to a nonlinear algebraic equation which can be solved by using a standard subroutine, the trapezium method is used to calculate the hereditary integral expression, then the creep deformation of viscoelastic plate is obtained. Meanwhile, the instantaneous critical loads, durable critical loads are obtained. On the other hand, the problem of creep buckling is analyzed by using the linear geometric theory, an analytical solution of deflection varying with time is obtained. The influence of geometry nonlinearity on the creep buckling of viscoelastic plates is studied.
【Key words】 viscoelastic plates; creep buckling; geometrical nonlinearity; the instantaneous critical load; the durable critical load;
- 【文献出处】 力学学报 ,Chinese Journal of Theoretical and Applied Mechanics , 编辑部邮箱 ,2006年01期
- 【分类号】O345
- 【被引频次】8
- 【下载频次】253