节点文献

非线性问题的再生核质点法

The reproducing kernel particle method for nonlinear analysis

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 赵光明宋顺成孟祥瑞

【Author】 ZHAO Guang-ming~(1,2) SONG Shun-cheng~2,MENG Xiang-rui~1 1.Department of Resource Exploration and Management Engineering,Anhui University of Science and Technology,Huainan 232001,Anhui,China; 2.Department of Applied Mechanics and Engineering,Southwest Jiaotong University,Chengdu 610031,China

【机构】 安徽理工大学资源开发与管理工程系,西南交通大学应用力学与工程系,安徽理工大学资源开发与管理工程系 安徽淮南232001西南交通大学应用力学与工程系,四川成都610031,四川成都610031,安徽淮南232001

【摘要】 无网格方法是一种新兴的数值计算方法,它是有限元法的重要补充.有限元法在许多特殊问题,如高度大变形问题、动态裂纹扩展、几何畸变、不连续问题等方面难以处理或不能解决。对再生核质点无网格方法的理论进行了研究,通过修正配点法实现其本质边界条件,将其应用到非线性问题的数值计算,通过自编程序对实例计算的结果表明,再生核质点法及本文对其本质边界条件的处理在求解非线性问题中是有效、可行的,结果精度高、收敛快.

【Abstract】 The meshless method is a newly developed method for numerical calculation.It is an important complement to the finite element method (FEM).FEM finds it hard to deal with such problems as high deformations,dynamic cracks,geometrical distortion and discontinuous medium.The present study conducts investigations on the reproducing kernel particle method (RKPM).The essential boundary conditions are implemented with the modified collocation method.RKPM is then applied into the numerical calculation of nonlinear problems.The results of calculations of concrete cases through self-designed programs show that RKPM and implemental method of essential boundary conditions are quite effective and feasible for the solution of nonlinear problems,with high accuracy and quick convergence.

【基金】 国家自然科学基金资助项目(50674002)
  • 【文献出处】 兰州大学学报 ,Journal of Lanzhou University , 编辑部邮箱 ,2006年05期
  • 【分类号】O302
  • 【下载频次】116
节点文献中: 

本文链接的文献网络图示:

本文的引文网络