节点文献
非线性问题的再生核质点法
The reproducing kernel particle method for nonlinear analysis
【摘要】 无网格方法是一种新兴的数值计算方法,它是有限元法的重要补充.有限元法在许多特殊问题,如高度大变形问题、动态裂纹扩展、几何畸变、不连续问题等方面难以处理或不能解决。对再生核质点无网格方法的理论进行了研究,通过修正配点法实现其本质边界条件,将其应用到非线性问题的数值计算,通过自编程序对实例计算的结果表明,再生核质点法及本文对其本质边界条件的处理在求解非线性问题中是有效、可行的,结果精度高、收敛快.
【Abstract】 The meshless method is a newly developed method for numerical calculation.It is an important complement to the finite element method (FEM).FEM finds it hard to deal with such problems as high deformations,dynamic cracks,geometrical distortion and discontinuous medium.The present study conducts investigations on the reproducing kernel particle method (RKPM).The essential boundary conditions are implemented with the modified collocation method.RKPM is then applied into the numerical calculation of nonlinear problems.The results of calculations of concrete cases through self-designed programs show that RKPM and implemental method of essential boundary conditions are quite effective and feasible for the solution of nonlinear problems,with high accuracy and quick convergence.
【Key words】 meshless method; RKPM; large deformation; elasto-plasticity;
- 【文献出处】 兰州大学学报 ,Journal of Lanzhou University , 编辑部邮箱 ,2006年05期
- 【分类号】O302
- 【下载频次】116