节点文献

多模态函数优化的多种群进化策略

Multi-population Evolution Strategies for Multi-modal Function Optimization

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 王湘中喻寿益

【Author】 WANG Xiang-zhong~ 1,2 , YU Shou-yi~1 (1.College of Information Science and Engineering, Central South University, Changsha 410083,China; 2.Department of Electrical Engineering, Zhuzhou Institute of Technology, Zhuzhou 412008, China. )

【机构】 中南大学信息科学与工程学院中南大学信息科学与工程学院 长沙410083株洲工学院电气工程系湖南株洲412008长沙410083

【摘要】 在一种使用单基因变异、精英繁殖、递减型策略参数的改进进化策略基础上,提出了一种求解多模态函数多个极值点的多种群协同进化策略,并给出了子种群进化概率、停止条件的确定和收敛到极值点的判断条件.在求多极值点的进化算法中,判别两个极值点是同峰还是异峰极值点是一个困难而关键的问题,为此引入了一种新的判别方法——山谷探索法,从而避免了确定小生境半径或峰半径.一组测试函数的仿真计算结果表明了所提出的算法能准确地找到全部极值点.

【Abstract】 Based on improved evolution strategies with single-gene mutation, elitist reproduction, and descending strategy parameters, a cooperating multi-population evolution strategy is proposed for the optimization of multi-modal function. The subpopulation’s probability of evolution, stopping condition, and criterion of convergence to local optima are presented. A new method named as valley searching to distinguish between same-peak optima and different-peak ones is proposed, and determining the radius of niche or peak is avoided which has been a hard problem for fitness sharing genetic algorithms. Simulation results on a set of benchmark functions show that the algorithm can properly find all the optima.

【基金】 国家自然科学基金项目(50275150)
  • 【文献出处】 控制与决策 ,Control and Decision , 编辑部邮箱 ,2006年03期
  • 【分类号】TP18
  • 【被引频次】45
  • 【下载频次】544
节点文献中: 

本文链接的文献网络图示:

本文的引文网络