节点文献
BP神经网络在湿法炼锌浸出工艺中的应用
Application of BP Neural Network in Leaching Technology of Zinc Hydrometallurgy
【摘要】 针对湿法炼锌浸出工艺中影响生产的因素,利用BP神经网络技术和自适应变步长学习函数构造了一种新的神经网络模型,提高了训练速度,增强了网络的稳定性。结果表明,该模型能比较准确的预测浸出率和终酸浓度。
【Abstract】 To evaluate the impact of process parameters on the manufacturing in leaching process of zinc hydrometallurgy,a new type of neural network was founded based on the back-propagation neural network(BPNN) technology and self-adaptive variable step-size learning functions.The training speed was enhanced and the network stability was guaranteed.Applying this model,fairly precise results of leaching rate and final acid concentration can be predicted.
【关键词】 湿法炼锌;
浸出;
BP神经网络;
自适应变步长;
【Key words】 zinc hydrometallurgy; leaching; BPNN; self-adaptive variable step-size;
【Key words】 zinc hydrometallurgy; leaching; BPNN; self-adaptive variable step-size;
【基金】 国家自然科学基金资助项目(50374017)
- 【文献出处】 矿冶工程 ,Mining and Metallurgical Engineering , 编辑部邮箱 ,2006年06期
- 【分类号】TF813
- 【被引频次】1
- 【下载频次】88