节点文献

基于支持向量机的木材缺陷识别

RECOGNITION OF WOOD DEFECTION BASED ON SUPPORT VECTOR MACHINE

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 业宁王厚立徐兆军丁建文

【Author】 Ye Ning~(1,2) Wang Houli~1 Xu Zhaojun~1 Ding Jianwen~1 ~1(College of Information Science and Technology,Nanjing Forestry University,Nanjing Jiangsu 210037,China) ~2(Department of Computer Science and Engineering,Southeast University,Nanjing Jiangsu 210096,China)

【机构】 南京林业大学信息科学技术学院南京林业大学信息科学技术学院 江苏南京210037东南大学计算机科学与工程系江苏南京210096江苏南京210037

【摘要】 对于一些昂贵的珍稀木材,如何提高成材率是一个值得深入研究的课题,本文将支持向量机的多分类方法引入到对木材图像的缺陷识别中,通过采样提取木材缺陷数据和相关统计信息,并标记缺陷的类别信息,将这些信息组成一个向量作为支持向量机训练的输入信息,用训练后的支持向量机网络分类木材图像,取得了较好的分类效果。

【Abstract】 How to improve the utilization of the expensive wood is an interesting research topic that needs deeply investigation.This paper proposes a novel method that introduces the SVM’s multi-classification algorithms into the recognition of the images of wood.First,the deficiency data and its related statistical information can be obtained from sampling and will be labeled into different classes.Then these data will be input into a SVM as training data.At last,the resulting SVM can be used to classify the images of wood.Experimental result shows that the method is satisfactory.

【基金】 国家自然基金项目(No.30271048)资助。
  • 【文献出处】 计算机应用与软件 ,Computer Applications and Software , 编辑部邮箱 ,2006年04期
  • 【分类号】TP391.4
  • 【被引频次】24
  • 【下载频次】304
节点文献中: 

本文链接的文献网络图示:

本文的引文网络