节点文献
泛逻辑泛运算模型之间的关系
Relationship of Universal Operation Model in Universal Logic
【摘要】 研究泛逻辑的泛与运算模型、泛或运算模型与模糊非之间的关系。证明了零级泛与运算模型T(x,y,h)、零级泛或运算模型S(x,y,h)与强非N(x)=1-x形成De Morgan三元组,当h∈(0,0.75),零级泛或运算S(x,y,h)=(m in(xm+ym,1))1/m,N(x)=(1-xm)1/m时,T,S,N形成一个强DeMorgan三元组。进一步证明了一级泛与运算模型T(x,y,h,k)、一级泛或运算模型S(x,y,h,k)与N(x)=(1-xn)1/n满足De Morgan定律;特别当h∈(0,0.75),一级泛或运算模型S(x,y,h,k)=(m in(xnm+ynm,1))1/nm,N(x)=(1-xnm)1/nm时,T,S,N形成一个强DeMorgan三元组。
【Abstract】 This paper studies the relationship of the universal conjunction model,the universal disjunction model and fuzzy negation.It proves that the 0-level universal conjunction model T(x,y,h),the 0-level universal disjunction model S(x,y,h) and strong negation N(x)=1-x form a De Morgan triple.The 0-level universal conjunction model,the 0-level universal disjunction model S(x,y, h)=(min(xm+ym,1))1/m and N(x)=(1-xm)1/m is a strong De Morgan triple for h∈(0,0.75).Moreover,it shows that the 1-level universal conjunction model T(x,y,h,k),the 1-level universal disjunction model S(x,y,h,k) and strong negation N(x)=(1-xn)1/n satisfy De Morgan triple.In particular,the 1-level universal conjunction model,the 1-level universal disjunction model S(x,y,h,k)=(min(xnm+ynm,1))1/nm and N(x)=(1-xnm)1/nm is a strong De Morgan triple for h∈(0,0.75).
【Key words】 Universal Conjunction Model; Universal Disjunction Model; Fuzzy Negation; De Morgan Triple;
- 【文献出处】 计算机应用研究 ,Application Research of Computers , 编辑部邮箱 ,2006年06期
- 【分类号】TP18
- 【被引频次】2
- 【下载频次】65