节点文献
N体问题的几种数值算法比较
On Algorithms for N-body Problems
【摘要】 对N体问题的数值积分中的Runge-Kutta-Fehlberg法(简称RKF法)、辛算法和厄米算法在N体问题中应用时引起的能量误差、半长径和偏心率的变化进行比较.结果发现:RKF法精度最高,但长时间内有误差积累;辛算法无人工耗散,能较好保持能量误差的稳定性;厄米算法虽然误差较大,但构造简单,耗机时较少.
【Abstract】 The Runge-Kutta-Fehlberg algorithm(RKF),the symplectic algorithm and the Hermite algorithm for N-body problems are studied with energies errors and semimajor axis and eccentricity.It shows that the precision of RKF is the highest,but its error increases with computation time.The symplectic algorithm has no artificial dissipation,and keeps stability of the energy error.The structure of the Hermite algorithm is simple and its computation time is short,but its error is greater than that of the other two.
【关键词】 Hamilton系统;
RKF法;
辛算法;
厄米算法;
二体问题;
N体问题;
【Key words】 Hamilton system; Runge-Kutta-Fehlberg algorithm; symplectic algorithm; Hermite algorithm; two-body problem; N-body problem;
【Key words】 Hamilton system; Runge-Kutta-Fehlberg algorithm; symplectic algorithm; Hermite algorithm; two-body problem; N-body problem;
- 【文献出处】 计算物理 ,Chinese Journal of Computational Physics , 编辑部邮箱 ,2006年05期
- 【分类号】P132
- 【被引频次】14
- 【下载频次】417