节点文献
支持向量机在人口预测中的应用
Application of Support Vector Machines in Population Forecast
【摘要】 支持向量机是一种新型的机器学习方法,该学习方法以结构风险最小化原则取代传统机器学习方法中的经验风险最小化原则,在小样本的机器学习中显示出了优异的性能。将这种新的统计学习方法应用到非线性时间序列预测,并将结果与BP神经网络预测的结果进行比较,结果表明该方法有更高的预测精度。
【Abstract】 Support Vector Machines(SVM) is a kind of novel learning method,which is based on Structural Risk Minimization principle,unlike traditional machine learning which is based on Empirical Risk Minimization principle.SVM has shown powerful ability in learning with limited samples.This paper applies this new novel statistics learning method to the nonlinear time series forecast,and forecast results are compared with BP Neural Network’s,and it is shown that the presented forecasting method is more accurate.
【关键词】 支持向量机;
人口预测;
BP神经网络;
【Key words】 support vector machine; population forecast; BP neural network;
【Key words】 support vector machine; population forecast; BP neural network;
【基金】 国家自然科学基金项目(项目编号:60174039)资助
- 【文献出处】 计算机与数字工程 ,Computer & Digital Engineering , 编辑部邮箱 ,2006年05期
- 【分类号】TP181
- 【被引频次】6
- 【下载频次】448