节点文献

基于凸片段分解的多边形窗口线裁剪算法

Line Clipping Against a Polygon through Convex Segments

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 孙春娟王文成李静吴恩华

【Author】 Sun Chunjuan~ 1,2,3) Wang Wencheng~ 1) Li Jing~ 1) Wu Enhua~ 1,4) ~ 1) (State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing 100080) ~ 2) (Graduate University of Chinese Academy of Sciences, Beijing 100049) ~ 3) (Department of Information Equipment, Academy of Equipment Command and Technology, Beijing 101416) ~ 4) (Department of Computer and Information Science, Faculty of Science and Technology, University of Macau, Macao)

【机构】 中国科学院软件研究所计算机科学国家重点实验室中国科学院软件研究所计算机科学国家重点实验室 北京100080中国科学院研究生院北京100049装备指挥技术学院信息装备系北京101416北京100080澳门大学科学技术学院电脑与资讯科学系澳门

【摘要】 将多边形窗口的边顺序地分割成一些片段,使得每个片段都能局部地形成一个凸多边形,称为凸片段,并建立一个二叉树来管理这些凸片段·在裁剪计算时,先根据二叉树快速地找到与被裁剪线段相交的凸片段,再利用高效的凸多边形线裁剪算法对这些凸片段进行裁剪操作·文中算法能有效地降低裁剪计算的时间复杂度,使其在O(logN)~O(N)之间自适应地变化,且大部分情况下时间复杂度小于O(N)·

【Abstract】 A novel algorithm is proposed in the paper for line clipping against a general polygon. By the algorithm, the polygon edges are decomposed sequentially into certain segments, under the constraint that each segment is able to form a local convex polygon. These segments are called convex segments, and a BSP tree is constructed for the segments. During the line clipping process, the BSP tree is employed to search for the convex segments in intersection with the line, and then calculate the clipped line against the convex segments. The algorithm shows nice performance by experiments that the time complexity of the algorithm is in between O(log N) and O(N) adaptively, and better than O(N) in most cases.

【基金】 国家自然科学基金(60373051);国家重点基础研究发展规划项目(2002CB312102);澳门大学科研基金
  • 【文献出处】 计算机辅助设计与图形学学报 ,Journal of Computer-Aided Design & Computer Graphics , 编辑部邮箱 ,2006年12期
  • 【分类号】TP391.41
  • 【被引频次】9
  • 【下载频次】185
节点文献中: 

本文链接的文献网络图示:

本文的引文网络