节点文献

椭圆offset曲线的多项式逼近算法

A Polynomial Approximation Algorithm for Calculating Offsets of Ellipse Curves

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 刘续征雍俊海郑国勤孙家广

【Author】 Liu Xuzheng~(1,2)) Yong Junhai~(1)) Zheng Guoqin~(1)) Sun Jiaguang~(1,2)) ()~(1))(School of Software,Tsinghua University,Beijing 100084) ()~(2))(Department of Computer Science and Technology,Tsinghua University, Beijing 100084)

【机构】 清华大学软件学院清华大学软件学院 北京100084清华大学计算机科学与技术系北京100084北京100084

【摘要】 首先对椭圆进行必要的细分,然后将每一段椭圆弧的offset曲线用一段Bézier曲线逼近,进而得到G1连续的分段Bézier曲线作为椭圆offset曲线的近似.该算法一方面给出了计算Bézier曲线段控制顶点的表达形式,计算简单;另一方面对offset曲线的逼近误差给出了整体估计,并且利用整体误差估计决定细分椭圆的段数,构造了满足给定容差的近似曲线.

【Abstract】 An algorithm to approximate offsets of ellipse curves by piecewise cubic Bézier segments is proposed.After some necessary partition,the offset curve of each elliptic arc is approximated by a cubic Bézier segment.And then the whole offset curve with G~1 is obtained.On one hand,the algorithm is simple to calculate because the control points of the Bézier segment can be expressed explicitly.On the other hand,the global error estimation for the algorithm is given.The error estimation can be used to determine the number of the segments in the partition of the ellipse.

【关键词】 offset曲线椭圆Bézier曲线Hausdorff距离
【Key words】 offset curveellipseBézier curveHausdorff distance
【基金】 国家自然科学基金(60403047);国家重点基础研究发展规划项目(2004CB719400);全国优秀博士学位论文作者专项资金(200342);新世纪优秀人才支持计划(NCET-04-0088)
  • 【文献出处】 计算机辅助设计与图形学学报 ,Journal of Computer-Aided Design & Computer Graphics , 编辑部邮箱 ,2006年10期
  • 【分类号】TP391.7
  • 【被引频次】3
  • 【下载频次】170
节点文献中: 

本文链接的文献网络图示:

本文的引文网络