节点文献
BP神经网络在液相传质系数中的应用
Application of BP neural network in liquid-side mass transfer coefficients
【摘要】 根据BP(Back-Propagation)神经网络原理,以气、液表观流率为输入变量,液相传质系数为输出变量,建立神经网络模型,并利用改进的LM(Levenberg-Marquardt)算法对网络进行了训练和优化。结果表明,BP神经网络能够较好地预测滴流状态下H2O吸收CO2液相传质系数。
【Abstract】 Based on the principle of BP(Back-Propagation)neural network,a neural network model was established,with gas and liquid velocities as inputs,liquid-side mass transfer coefficient as(output).By using Levenberg-Marquardt(LM)algorithm,the net was trained and optimized.Results showed that BP neural(network) could predict liquid-side mass transfer coefficient for CO2 absorbed by H2O in the trickled condition.
【基金】 吉林省科技厅科学基金资助项目(19980564)
- 【文献出处】 长春工业大学学报(自然科学版) ,Journal of Changchun University of Technology(Natural Science Edition) , 编辑部邮箱 ,2006年04期
- 【分类号】TQ021.4
- 【被引频次】3
- 【下载频次】44