节点文献

Photosynthetic characteristics of dominant tree species and canopy in the broadleaved Korean pine forest of Changbai Mountains

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【Author】 WU Jiabing, GUAN Dexin, SUN Xiaomin, ZHANG Mi, SHI Tingting, HAN Shijie & JIN Changjie Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; Graduate University of the Chinese Academy of Sciences, Beijing 100049, China; Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

【摘要】 <正>Based on the light-photosynthesis response measurement at leaf level, combined with over- and under-canopy eddy covariance measurements, research on photosynthetic characteristics of single trees and forest canopy was conducted. The relationship between light intensity and photo-synthetic rates for leaves and canopy can be well fitted by a non-rectangular hyperbola model. Mongolian oak presented a high light compensation point, Lcp (28μmol·m-2·s-1), a light saturation point Lsp (>1800μmol·m-2·s-1), and a maximal net photosynthetic rate Pmax (9.96μmol·m-2·s-1), which suggest that it is a typical heliophilous plant. Mono maple presented the highest apparent quantum efficiencyα(0.066) but the lowest, Lcp (16μmol·m-2·s-1), Lsp (=800μmol·m-2·s-1), and Pmax (4.51μmol·m-2·s-1), which suggest that it is heliophilous plant. Korean pine showed the lowestαvalue but a higher Pmax, which suggest that it is a semi-heliophilous plant. At the canopy level, the values of both or and Pmax approached the upper limit of reported values in temperate forests, while Lcp was within the lower limit. Canopy photosynthetic characteristics were well consistent with those of leaves. Both showed a high ability to photosynthesize. However, environmental stresses, especially high vapor pressure deficits, could significantly reduce the photosynthetic ability of leaves and canopy.

【Abstract】 Based on the light-photosynthesis response measurement at leaf level, combined with over- and under-canopy eddy covariance measurements, research on photosynthetic characteristics of single trees and forest canopy was conducted. The relationship between light intensity and photo-synthetic rates for leaves and canopy can be well fitted by a non-rectangular hyperbola model. Mongolian oak presented a high light compensation point, Lcp (28μmol·m-2·s-1), a light saturation point Lsp (>1800μmol·m-2·s-1), and a maximal net photosynthetic rate Pmax (9.96μmol·m-2·s-1), which suggest that it is a typical heliophilous plant. Mono maple presented the highest apparent quantum efficiencyα(0.066) but the lowest, Lcp (16μmol·m-2·s-1), Lsp (=800μmol·m-2·s-1), and Pmax (4.51μmol·m-2·s-1), which suggest that it is heliophilous plant. Korean pine showed the lowestαvalue but a higher Pmax, which suggest that it is a semi-heliophilous plant. At the canopy level, the values of both or and Pmax approached the upper limit of reported values in temperate forests, while Lcp was within the lower limit. Canopy photosynthetic characteristics were well consistent with those of leaves. Both showed a high ability to photosynthesize. However, environmental stresses, especially high vapor pressure deficits, could significantly reduce the photosynthetic ability of leaves and canopy.

【基金】 We would like to thank the Research Station of Changbai Mountain Forest Ecosystem, Chinese Academy of Sciences. This work was supported by the Na-tional Key Basic Research Development Program of China (Grant No. 2002CB412502); the National Natural Science Foundation of China (Grant No. 30370293); Knowledge Innovation Project of Chinese Academy of Sciences (Grant No. KZCX1-SW-01-01); the Frontier Project of Insti-tute of Applied Ecology, Chinese Academy of Sciences.
  • 【文献出处】 Science in China(Series D:Earth Sciences) ,中国科学(D辑:地球科学)(英文版) , 编辑部邮箱 ,2006年S2期
  • 【分类号】S718.5
  • 【被引频次】8
  • 【下载频次】105
节点文献中: 

本文链接的文献网络图示:

本文的引文网络