节点文献
基于多特征的支持向量机印鉴识别
A SVM Classification Algorithm based Multiple Supplemental Features
【摘要】 印鉴真伪鉴别的难点要求识别系统同时具备同类印鉴的鲁棒性及异类印鉴的敏感性。针对这一难点,本文提出了一种基于多特征的支持向量机(SupportVectorM ach ine,SVM)鉴别算法,根据多类特征以及支持向量机的自适应寻优特性,获得对真伪印鉴的鉴别。采用Gabor滤波器获得频率特征,采用差图像获得结构特征,采用原图像和极坐标图像的奇异值获得不变量特征。采用支持向量机(SupportVectorM ach ine,SVM)对印鉴进行真伪鉴别。实验表明,本文方法具有很高的真伪鉴别能力。
【Abstract】 This paper presents a SVM(Support Vector Machine)classification algorithm based multiple supplemental features extraction to improve the efficiency of seal imprint verification.Genuine and forgery seal imprints are classified according to effective supplement of multiple features.Structural features are extracted from diff-image.Multiple channels Gabor filters are introduced to extract frequency domain features;SVD is applied to polar coordinates image to obtain invariant algebraic features.SVM classifier is adopted to implement final classification decision.Experimental results show that high recognition rate can be achieved.
【Key words】 Gabor filter; polar coordinates transformation; SVD; SVM;
- 【文献出处】 航空计算技术 ,Aeronautical Computing Technique , 编辑部邮箱 ,2006年04期
- 【分类号】TP391.4
- 【被引频次】11
- 【下载频次】109