节点文献

基于提升小波和神经网络的超高压电网故障类型识别

Fault classification for UHV grids by using lifting wavelet and neural network

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 王忠民乐全明杨光亮郁惟镛张沛超章启明周岚

【Author】 WANG Zhong-min~(1,2),LE Quan-ming~1,YANG Guang-liang~1,YU Wei-yong~1,ZHANG Pei-chao~1ZHANG Qi-ming~(1,2),ZHOU Lan~(1,2)(1.School of Electronics,Information and Electrical Engineering,Shanghai Jiaotong Univ.,Shanghai 200240,China;2.Dept.of Protection,SMEPC,Shanghai 200122,China)

【机构】 上海交通大学电子信息与电气工程学院上海交通大学电子信息与电气工程学院 上海200240上海市电力公司保护处上海200122上海200240

【摘要】 电力调度中心为进一步提高故障类型识别率和计算速度,利用提升小波和BP网络构造了新的小波神经网络故障识别模型,应用db5提升小波对故障电流进行分解,将分解到的(0,375)Hz频率段的系数输入到BP神经网络;为了提高算法的收敛速度,采用共轭梯度法训练该神经网络。通过ATP仿真及华东电网实际故障录波数据的测试,结果表明该模型具有很高的识别率和收敛速度。

【Abstract】 To further improve the fault classification rate and calculation speed,a novel fault classification model using the lifting wavelet and BP network was developed.The coefficients of the fault current in the low frequency band between 0 and 375 Hz that decomposed by db5 lifting wavelet were put into the BP neural network,at the same time,the conjugate gradient method was adopted to train the network in order to improve the convergence speed of the algorithm.ATP simulation and tests of the real recording oscillograph data of fault occurred in East China Power Grid prove that the model has the advantages of high classification rate and convergence speed.

  • 【文献出处】 华东电力 ,East China Electric Power , 编辑部邮箱 ,2006年02期
  • 【分类号】TM711
  • 【被引频次】17
  • 【下载频次】271
节点文献中: 

本文链接的文献网络图示:

本文的引文网络