节点文献

基于神经网络的三维宽场显微图像复原研究

A Restoration Method for 3D Image of the Wide-field Microscope Based on the Network

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 陈华金伟其张楠石俊生王霞

【Author】 Chen Hua~ 1,2 ,Jin Weiqi~1,Zhang Nan~1,Shi Jinsheng~1,Wang Xia~1 1 Dept of Optical Engineering,School of Information Science & Technology,Beijing Institute of Technology,Beijing 100081 2 School of Computer and Electronics and Information,Guangxi University,Nannong,Guangxi 530004

【机构】 北京理工大学信息科学技术学院光电工程系北京理工大学信息科学技术学院光电工程系 北京100081广西大学计算机与电子信息学院广西南宁530004北京100081

【摘要】 提出一种利用BP神经网络进行三维宽场显微图像复原的非线性映射方法,将三维图像转化为二维图像进行处理,利用神经网络的学习能力,通过训练,建立含有散焦信息的二维模糊图像与二维清晰图像之间的映射关系,然后对切片堆叠进行逐幅复原,从而实现显微图像的三维复原·得到的复原图像在视觉上和定量分析上都获得了很好的效果·由于采用小规模神经网络,训练时间短,计算量小,使实时复原成为可能·

【Abstract】 The restoration for 3D (three dimensions) image of wide-field microscope needs to process very large data size,and it spend much time.In this paper,a new method is proposed for 3D image restoration of wide-field microscope based on the BP neural network.The initial step of the method is to transform a 3D image into a series of 2D images.Then,the mapping relationship between the 2D blurring image with defocusing message and 2D clear image is established by training the BP neural network,which has a high ability of learning.Following,every 2D section image of the stack is restored in succession.As a result,the restoration of 3D image of wide-field microscope is achieved. Extensive tests demonstrate that this method has a satisfying restoration effect both in visual impression and quantitative analysis.For adopting small dimensional neural network,the training time is little,and the operational amount is small.Thus,it is possible to realize the real time restoration.

【基金】 高等学校博士学科点专项科研基金(20020007006)资助项目
  • 【文献出处】 光子学报 ,Acta Photonica Sinica , 编辑部邮箱 ,2006年03期
  • 【分类号】TP391.41
  • 【被引频次】19
  • 【下载频次】233
节点文献中: 

本文链接的文献网络图示:

本文的引文网络