节点文献
一类离散P-Laplacian方程正解的三解定理
A Theorem About Triple Positive Solutions for a Discrete P-Laplacian Equations
【摘要】 应用Leggett-Williams不动点定理,研究具有P-LapLacian算子的非线性边值问题,Δφp(Δu(t-1))+a(t)f(u(t))=0,Δu(0)=u(T+2)=0正解的存在性,其中φp(s)=s p-2s,p>1.建立了该问题至少存在3个正解的充分条件.
【Abstract】 By means of the Leggett-Williams fixed-point theorem in cones,we study the existence of positive solutions for the nonlinear P-Laplacian boundary value problemΔφ_p(Δu(t-1))]+a(t)f(u(t))=0,Δu(0)=u(T+2)=0,in which φ_p(s)=|s|~p-2s,p>1.Sufficient conditions are established so that there exist at least three positive solutions.
【关键词】 P-LapLacian边值问题;
正解;
锥;
差分方程;
【Key words】 P-Laplacian boundary value problem; positive solutions; cone; difference equation;
【Key words】 P-Laplacian boundary value problem; positive solutions; cone; difference equation;
- 【文献出处】 甘肃科学学报 ,Journal of Gansu Sciences , 编辑部邮箱 ,2006年03期
- 【分类号】O175.8
- 【被引频次】2
- 【下载频次】48