节点文献

单神经元模糊PID控制在光电跟踪系统中的应用

Single neuron fuzzy PID control application in photoelectric tracking system

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 王婵娟王强傅承毓

【Author】 WANG Chan-juan1, 2,WANG Qiang1,FU Chen-yu1 (1. The Institute of Optics and Electronics, the Chinese Academy of Sciences, Chengdu 610209, China; 2. Graduate School of the Chinese Academy of Sciences, Beijing 100039, China )

【机构】 中国科学院光电技术研究所中国科学院光电技术研究所 四川成都610209 中国科学院研究生院北京100039四川成都610209

【摘要】 为提高ATP系统的跟踪精度和快速性,将模糊控制引入单神经元自适应PID控制中,提出单神经元模糊PID控制。它运用有监督的Hebb学习规则在线修正PID参数,而神经元的比例系数则由Sugeno模糊逻辑系统根据系统的误差和误差变化量大小进行调整,使控制系统对动态过程信息的利用程度达到最优。仿真和实验结果表明,系统不仅具有自学习和自适应能力,且动态性能和稳态性能都优于经典PID控制,超调量减小0.95%;上升时间和调节时间均减小1s左右;稳态误差减小1.19′。满足现代高精度跟踪系统的需求。

【Abstract】 In order to improve the tracking precision and tracking speed, fuzzy control is introduced into single neuron PID control to form single neuron fuzzy PID control, which uses the supervising Hebb learning rules to adjust PID parameters. The proportion parameter of single neuron is adjusted based on Sugeno fuzzy logic according to error and error variation, and it can improve the application of the system dynamic process message. The results of simulation and experiment indicate that tracking system not only has the capability of learning and self-adaptation, but also have better dynamic performance and steady-state performance than that of PID control. The overshoot of system decreases by 0.95%, the setting time and the rise time decreases by 1s and the steady-state error decreases by 1.19′.

【基金】 863高技术课题
  • 【文献出处】 光电工程 ,Opto-Electronic Engineering , 编辑部邮箱 ,2006年02期
  • 【分类号】TN29
  • 【被引频次】18
  • 【下载频次】286
节点文献中: 

本文链接的文献网络图示:

本文的引文网络