节点文献

基于投影寻踪自回归的短时交通流预测

Short-time Traffic Flow Forecasting Based on Projection Pursuit Auto Regression

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 王晓原刘海红

【Author】 WANG Xiao-yuan,LIU Hai-hong(Institute of Intelligent Transportation,School of Transportation and Vehicle Engineering,Shandong University of Technology,Zibo 255049,China)

【机构】 山东理工大学交通与车辆工程学院智能交通研究所山东理工大学交通与车辆工程学院智能交通研究所 山东淄博255049山东淄博255049

【摘要】 及时准确地进行交通流短时预测是智能运通系统(ITS),尤其是其先进的交通管理系统(ATM S)与先进的出行者信息系统(AT IS)研究的关键内容之一。随着预测时间跨度的缩短,交通流量的变化显示出越来越强的不确定性,使得一般方法的预测精度大大降低。例如:非参数回归的算法是一种“无参数”、可移植、高预测精度的实时预测算法,在交通流预测中发挥了很大的作用,但随着样本数据维数的增加,存在“维数祸根”的现象。针对目前短时交通流预测存在的问题,本文提出一种基于投影寻踪自回归技术的短时交通流预测模型,解决了“维数祸根”和高维数据间的非正态、非线性问题。经过实测数据验证,该算法完全满足实时交通流预测的需要。

【Abstract】 Accurate short-time traffic flow forecasting is one of the important issues for Intelligent Transportation Systems(research,) especially for the Advanced Traffic Management Systems and Advanced Traveler Information Systems research.(With) the shortening of the forecasting term,the uncertainty of traffic flow becomes more and more seriously,so that the(forecasting) effect of general approaches is decreasing.For an example,the algorithm based on non-parametric regression is a real-time nonparametric forecasting algorithm with the characteristic of high transplantation and accuracy,which plays an important role in traffic flow forecasting,yet there is the problem of ″dimension curse″ as the dimensions of the sample data increase.For the purpose of solving the question of shorttime traffic flow forecasting,a short-time traffic flow forecasting model based on projection pursuit auto regression technique is established in this paper.The problem of ″dimension curse″ and non-normality among high-dimensions data are solved.This algorithm satisfies the need of real-time traffic flow(forecasting) completely through the field data test.

【基金】 国家自然科学基金资助项目(50378042);山东省社会科学规划研究项目(04CMZ08);山东理工大学科研基金重点资助项目(2004KJZ02)
  • 【文献出处】 系统工程 ,Systems Engineering , 编辑部邮箱 ,2006年03期
  • 【分类号】U491.14
  • 【被引频次】45
  • 【下载频次】489
节点文献中: 

本文链接的文献网络图示:

本文的引文网络