节点文献

人工神经网络与动态搜索的机组组合算法

Fast Algorithm About Unit Commitment Based on Revised BP Artificial Neural Network and Dynamic Search

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 关仲陈刚张忠静朱小军谢松

【Author】 GUAN Zhong~1,CHEN Gang~1,ZHANG Zhong-jing~1,ZHU Xiao-jun~1, XIE Song~2(1.Key Laboratory of High Voltage Engineering and Electrical New Technology,Ministry of Education,Electrical Engineering College of Chongqing University,Chongqing 400030,China;2.Yangjiaping Power Bureau,Chongqing Electric Power Corporation,Chongqing 400050,China)

【机构】 重庆大学电气工程学院高电压与电工新技术教育部重点实验室重庆市电力公司杨家坪供电局 重庆400030重庆400030重庆400050

【摘要】 为了使机组达到最优组合,减少运行成本,研究了基于修正BP人工神经网络与动态搜索的快速算法在机组组合中的运用.采用修正Levenberg-Marquardt算法训练BP神经网络,并针对该算法占用内存大的缺点,提出了减少内存占用量的修正.由此,根据负荷预测曲线,应用修正BP人工神经网络产生机组的预开停计划,在此基础之上,针对预计划中某些机组状态不确定的阶段,应用动态规划法进行全局调整以确定机组的状态组合.实验数据表明,所提出的算法与传统的动态规划算法相比,可以在有效地减少时间与内存的占用量的前提下,有效地避免动态规划法中的维数灾的问题.

【Abstract】 In order to reduce the operation cost and optimize the unit commitment,the fast algorithm about unit commitment based on revised BP ANN(Artificial Neural Network) and dynamic search is discussed.The BP ANN is trained with Levenberg-Marquardt algorithm,which aiming at its drawback of the storage of some matrices that can be quite large for certain problems,and a revised algorithm is presented.The BP ANN is used to generate a pre-schedule according to the input load profile.Then the dynamic search is performed some stages where the commitment states of some of the units are not certain.The experimental results indicate that the proposed algorithm can reduce the execution time and memory space without degrading the quality of the generation schedule.

  • 【文献出处】 重庆大学学报(自然科学版) ,Journal of Chongqing University(Natural Science Edition) , 编辑部邮箱 ,2006年10期
  • 【分类号】TM744
  • 【被引频次】9
  • 【下载频次】226
节点文献中: 

本文链接的文献网络图示:

本文的引文网络