节点文献

基于二维Gabor小波的人脸识别算法

Face Recognition Based on Two-Dimensional Gabor Wavelets

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 曹林王东峰刘小军邹谋炎

【Author】 Cao Lin Wang Dong-feng Liu Xiao-jun Zou Mou-yan (Institute of Electronics, Chinese Academy of Sciences, Beijing 100080, China) (Graduate School of the Chinese Academy of Sciences, Beijing 100039, China) (Dept. of Information and Telecommunication, Beijing Information Technology Inst., Beijing 100101, China)

【机构】 中国科学院电子学研究所中国科学院电子学研究所 北京 100080 中国科学院研究生院 北京 100039 北京信息工程学院信息与通信工程系 北京 100101北京 100080北京 100080 中国科学院研究生院 北京 100039

【摘要】 该文提出了一种基于二维Gabor小波的人脸识别算法。该算法先对人脸图像进行多分辨率的Gabor小波变换,然后在图像上放置一组网格结点,每个结点用该结点处的多尺度Gabor幅度特征描述,采用主元分析法对每个结点进行去相关、降维,最后形成特征结。把每个特征结作为观测向量,对隐马尔可夫模型进行训练,并把优化的模型参数用于人脸识别。实验结果表明,该方法识别率高,复杂度较低。

【Abstract】 A new approach based on two-dimensional Gabor wavelets transform for face recognition is presented. The Gabor wavelet representation of an image is the convolution of the image with a family of Gabor kernels. A set of vectors called nodes, over a dense grid of image points are formed, and each node is labeled with a set of complex Gabor wavelets coefficients. The magnitudes of the coefficients are used for recognition. Principal component analysis is a decorrelation technique and its primary goal is to project the high dimensional vectors into a lower dimensional space. Feature nodes, as observation vectors of HMM, is derived by using principal component analysis. A set of images representing different instances of the same person is used to train each HMM, and each individual in the database is represented by an optimal HMM face model. Experimental results show that the proposed algorithm has a high recognition rate with relatively low complexity.

【基金】 中国科学院科技创新基金资助课题
  • 【文献出处】 电子与信息学报 ,Journal of Electronics & Information Technology , 编辑部邮箱 ,2006年03期
  • 【分类号】TP391.41
  • 【被引频次】60
  • 【下载频次】1112
节点文献中: 

本文链接的文献网络图示:

本文的引文网络