节点文献
非线性统计匹配用于子带鲁棒语音识别
Nonlinear Statistical Matching for Subband Robust Speech Recognition
【摘要】 由于语音信号的多变性,识别系统的性能极易受噪声环境的影响而导致性能下降。该文以听觉试验为基础,提出一种新的非线性独立子带隐马尔可夫模型(HMM)最大后验统计匹配算法。该算法依据人耳感知的频选性, 根据各子带噪声特点采用统计匹配、MAP估计和HMM/MLP非线性映射来补偿噪声环境的影响。实验表明该算法明显改善了识别系统在噪声环境下的性能。
【Abstract】 The performance of the speech recognition systems is deteriorated dramatically under noise condition for variation of speech signal. According to the auditory tests, this paper proposes a new nonlinear sub-band Maximum A Posteriori (MAP)statistical matching algorithm based on the independent sub-band analysis. According to the perception of human’s ear and noise feature of different frequency-bands, the algorithm compensates the effects of noise with statistical matching, MAP estimation and HMM/MLP nonlinear mapping. The test shows that the proposed algorithm improves the recognition performance notably under noise condition.
【Key words】 Speech recognition; Hidden Markov model; Maximum A Posteriori; Auditory scene analysis;
- 【文献出处】 电子与信息学报 ,Journal of Electronics & Information Technology , 编辑部邮箱 ,2006年03期
- 【分类号】TN912.34
- 【被引频次】6
- 【下载频次】129