节点文献

一种新的基于时空马尔可夫随机场的运动目标分割技术

A Novel Moving Object Segmentation Technology Based on Spatiotemporal Markov Random Field

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 黄贤武朱莉仲兴荣王加俊

【Author】 Huang Xian-wu Zhu Li Zhong Xing-rong Wang Jia-jun (School of Electronics & Information Engineering, Soochow University, Suzhou 215021, China)

【机构】 苏州大学电子信息学院苏州大学电子信息学院 苏州 215021苏州 215021

【摘要】 在图像处理领域,视频图像序列中的运动目标分割技术是一个被广泛研究的热点课题。该文提出一种新的基于时空马尔可夫随机场的运动目标分割技术。首先,对视频序列的前后3帧图像进行处理,获得两帧初始标记场;随后,对两帧初始标记场进行“与”操作,获得共同标记场;最后,以原始图像的色彩聚类图像作为先验知识,重新定义Gibbs能量函数,并利用迭代条件模型(ICM)实现最大后验概率(MAP)的估算问题,获得优化标记场。实验结果表明:该模型克服了传统时空马尔可夫随机场模型因运动产生的显露遮挡现缘,同时减弱了运动一致性造成的空洞现象并削弱了噪声的影响。

【Abstract】 In the field of image processing, the segmentation of moving object in video sequences is a hot research topic in recent years. In this paper, a novel method of moving object segmentation based on spatiotemporal Markov Random Field(MRE) is proposed. Firstly, two observations and two initial labels are derived from the three successive images with the same method in the first scheme. Secondly, the AND-label is obtained with the AND-operation on the two initial labels. Finally, the image segmented with the color clustering algorithm is regarded as prior knowledge, with which the corresponding Gibbs energy function is redefined, and the maximum a posteriori estimator, which is determined by using the iterated conditional mode algorithm, is employed to get optimized labels. The new MRF model contributes to the weakening of the noise and to the elimination of the covered-uncovered background and to the recovery of the uniform moving regions.

【基金】 江苏省自然科学基金(BK2001137)资助课题
  • 【文献出处】 电子与信息学报 ,Journal of Electronics & Information Technology , 编辑部邮箱 ,2006年02期
  • 【分类号】TP391.41
  • 【被引频次】25
  • 【下载频次】446
节点文献中: 

本文链接的文献网络图示:

本文的引文网络