节点文献

遗传-蚁群混合算法在高温超导匀场磁体优化设计中的应用

OPTIMAL DESIGN OF MAGNET WITH HIGHLY UNIFORM MAGNETIC FIELDS BASED ON GENETIC-ANT COLONY HYBRID ALGORITHM

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 张宏杰宗军励庆孚

【Author】 ZHang Hong-Jie~ 1 Zong Jun~ 2 Li Qing-Fu~ 1 ~ 1 School of Electrical Engineering, Xi’an Jiaotong University, Xi’an, 710049 ~ 2 Innova Superconductor Technology Co., Ltd., Beijing, 100176

【机构】 西安交通大学电气工程学院北京英纳超导技术有限公司西安交通大学电气工程学院 西安710049北京100176西安710049

【摘要】 遗传算法具有很强的自适应性、鲁棒性和全局搜索能力,但其局部搜索能力相对较弱,计算后期易出现进化缓慢、过早收敛等问题,蚁群算法是近几年迅速发展起来的一种新的全局优化算法,具有正反馈机制,但是计算初期由于信息素差别小,初始收敛速度较慢.本文将这两种优化方法结合起来,充分发挥各自的优势,形成了遗传-蚁群混合算法,并选用测试函数对算法的优化性能作了对比计算,最后以高温超导匀场磁体为实际应用目标,以绕制磁体所用超导带长度为目标函数对磁体结构进行优化设计,优化方案比原始方案节省7.32%的超导带材用量.

【Abstract】 Genetic algorithm (GA) is a popular global optimization method using the concept of natural evolution. It has such disadvantages as premature convergence, low convergence speed. Ant colony optimization (ACO) is a novel simulating evolution algorithm. It has the characteristic of positive feedback. But the convergence speed of ACO is lower at the beginning for there is only little pheromone difference on the path at that time. This paper introduced the principium, characteristics of ACO and combined it with genetic algorithm. The hybrid algorithm has both advantages of these two algorithms and the optimization efficiency was enhanced. The algorithm was used for the optimized design of high temperature superconductivity (HTS) magnet with highly uniform magnetic fields. The total length of HTS tape is reduced 7.32% for the optimized magnet.

【基金】 西安交通大学博士学位论文基金(DFxjtu2002-8)资助的课题~~
  • 【文献出处】 低温物理学报 ,Chinese Journal of Low Temperature Physics , 编辑部邮箱 ,2006年03期
  • 【分类号】O511
  • 【被引频次】8
  • 【下载频次】179
节点文献中: 

本文链接的文献网络图示:

本文的引文网络