节点文献

基于数据挖掘多层次细节分解的负荷序列聚类分析

Clustering Analysis of Electric Load Series Using Clustering Algorithm of Multi-Hierarchy and Detailed Decomposition Based on Data Mining

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 张智晟孙雅明张世英赵艳

【Author】 ZHANG Zhi-sheng,SUN Ya-ming,ZHANG Shi-ying,ZHAO Yan (Tianjin University,Nankai District,Tianjin 300072,China)

【机构】 天津大学天津大学 天津市南开区300072天津市南开区300072

【摘要】 提出了多层次细节分解的负荷聚类算法及其性能评估指标。该算法利用负荷序列间的差分序列均方差和欧氏距离形成交集优化判据;同时根据随机因素对负荷的敏感性加入对应参数要求来控制多层次细节分解聚类,对负荷曲线轮廓相似性细节程度聚类是提高预测精度的重要基础。笔者对所提出的聚类算法与一般欧氏距离聚类、Kohonen神经网络聚类算法进行了性能评估和比较,证明了该算法对季节性负荷具有高敏感性,对高温和气候因素与负荷之间的复杂相关性具有高识别能力,该聚类算法对提高负荷预测精度是有效的。

【Abstract】 A load clustering algorithm (CA) using multi-hierarchy and detailed decomposition based on data mining (DM) and its performance evaluation index are proposed, in which the Euclidean distances and mean square deviation of difference series of load series are used to construct optimal criterion of intersection, at the same time the multi-hierarchy and detailed decomposition clustering is controlled by adding requirements of corresponding parameters according to the sensitivity of random factors to loads, and it is an important base for improving load forecasting precision to cluster the detailed extent of load curve’s contour similarity. The performance of the proposed CA is evaluated and compared with that based on the Euclidean distance and that based on Kohonen neural network by simulation, and it is proved that the proposed CA possesses both high sensitivity to loads in different seasons and high recognition ability to complicated relativity of the load time series affected by high temperature and meteorological factors. So the presented CA can improve effectively the load forecasting precision.

  • 【文献出处】 电网技术 ,Power System Technology , 编辑部邮箱 ,2006年02期
  • 【分类号】TM714
  • 【被引频次】47
  • 【下载频次】737
节点文献中: 

本文链接的文献网络图示:

本文的引文网络