节点文献
基于马尔可夫链的发电机状态检修决策
Maintenance Strategy of Generator Set Based on Markov Chain
【摘要】 为避免发电机组“检修过剩”或“检修不足”现象的发生,提出了基于马尔可夫链状态估计模型的状态检修策略。在机组状态估计模型中,机组状态用状态概率向量表示,通过一步转移概率把相邻状态概率向量联系在一起,并用步伐因子考虑机组所带负荷对转移概率的影响。在预估机组临界故障状态的基础上,以检修费用和电量收益损失总和最小为目标函数确定最佳检修时间。
【Abstract】 To avoid the "over-maintenance" or "under-maintenance" in generator set maintenance decision,a maintenance strategy based on Markov chain state estimation model is presented.In the model,generator set state is described as state probability vector,and is associated with two abutting state probability by one-step transfer probability.The effect of generator load on transfer probability is considered by step factor.On the basis of estimating the critical fault state of generator set,the optimal maintenance schedule is determined according to minimal sum of the maintenance cost and the income loss.
【Key words】 Markov chain; state estimation; maintenance; step factor;
- 【文献出处】 电力系统及其自动化学报 ,Proceedings of the CSU-EPSA , 编辑部邮箱 ,2006年02期
- 【分类号】TM31
- 【被引频次】27
- 【下载频次】332