节点文献
三色Ramsey数R(Cm1,Cm2,Cm3研究
Study of three color Ramsey numbers R(Cm1,Cm2,Cm3)
【摘要】 用r种颜色对图G的所有边着色,记着第i色的边构成的子图为Gi,如果存在一种着色方法使得对所有的1≤i≤r都满足Hi Gi,则称图G对于(H1,H2,…,Hr)可r着色.R am sey数R(H1,H2,…,Hr)是使得完全图Kn对于(H1,H2,…,Hr)不可r着色的最小正整数n.令m1>m2≥m3,E r.do.s等给出了当m1足够大时R(Cm1,Cm2,Cm3)的值.通过对m1不是足够大的情况进行研究,证明了当m≥5时,R(Cm,C3,C3)=5m-4;并给出了当m1≤7时R(Cm1,Cm2,Cm3)的值.
【Abstract】 Let Gi be the subgraph of G whose edges are in the i-th color in an r-coloring of the edges of a graph G.If there exists an r-coloring of the edges of a graph G such that HiGi for all 1≤i≤r, then G is said to be r-colorable to(H1,H2,…,Hr).The multicolor Ramsey number R(H1,H2,…,Hr) is the smallest integer n such that Kn is not r-colorable to(H1,H2,…,Hr).Let m1>m2≥m3.If m1 is sufficiently large,Erdo··s,et al.determined the values of R(Cm1,Cm2, Cm3).The case that m1 is not sufficiently large is studied.It is proved that R(Cm,C3,C3)=5m-4 for m≥5,the values of R(Cm1,Cm2,Cm3) for m1≤7 are determined.
【Key words】 edge coloring; multicolor Ramsey number; critical graph; cycle;
- 【文献出处】 大连理工大学学报 ,Journal of Dalian University of Technology , 编辑部邮箱 ,2006年03期
- 【分类号】O157.5
- 【被引频次】4
- 【下载频次】73