节点文献

面向离散点的空间权重矩阵生成算法与实证研究

Analysis and Implement of Spatial Weight Matrix Based on Discrete Points

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 刘仲刚李满春刘剑锋孙燕

【Author】 LIU Zhong-gang~1,LI Man-chun~1,LIU Jian-feng~2,SUN Yan~3 (1.Department of Urban and Resources Sciences,Nanjing University,Nanjing 210093;2.Hebei Institute of Geographical Sciences,Shijiazhuang 050011;3.National Research Center for Resettlement,Hohai University,Nanjing 210098,China)

【机构】 南京大学城市与资源学系河北省地理科学研究所河海大学移民研究中心 江苏南京210093江苏南京210093河北石家庄050011江苏南京210098

【摘要】 采用阈值法和k-近邻法度量空间上离散点间的空间邻接关系,针对不同的距离计算方式(欧式距离和曼哈顿距离)设计了面向离散点的空间权重矩阵生成算法,使用C#语言在计算机上实现。用该算法对收集的8 367个常州市地价样点构建了不同土地用途地价样点的空间权重矩阵,并计算出分用途的常州市城市地价空间自相关指数。

【Abstract】 There are many spatial phenomena based on discrete points.Constructing an adjacency spatial weight matrix is the primary process to deal with further spatial analysis and statistics.In this article,the threshold algorithm and k-nearest neighbor algorithm were employed to measure the spatial connectivity among discrete spatial points.For different types of distance,namely Euclidean and Manhattan distance,corresponding algorithms to generate the connectivity weight matrix were advanced,which were implemented with C# programming language.Then,8 367 land price sample points from land price survey in Changzhou City were chosen in the case study.These sample points are first categorized by different sorts of land use,such as residential,industrial and commercial,and the spatial weight matrix is built for each land use type.And also the spatial autocorrelation indices were figured out.Comparison indicates that the algorithms advanced in this article can measure the spatial point pattern quickly and properly.

【基金】 国家自然科学基金项目(40371091);国土资源部土地资源监测调查工程(2005-6.1-6)
  • 【文献出处】 地理与地理信息科学 ,Geography and Geo-Information Science , 编辑部邮箱 ,2006年03期
  • 【分类号】TP301.6
  • 【被引频次】45
  • 【下载频次】872
节点文献中: 

本文链接的文献网络图示:

本文的引文网络