节点文献
基于FCM的动态结合全局图像阈值分割
Image Segmentation Using Dynamic Threshold Combined Global Threshold Based FCM
【摘要】 全局阈值分割对于小目标物效果不理想,动态阈值容易产生阴影等干扰,但综合考虑全局阈值和动态阈值可以达到比较理想的结果。模糊C均值算法用于灰度图像分割是一种非监督模糊聚类后再标定的过程,该文在不明显增加运算量的前提下,利用模糊C均值自动聚类的功能分别得到全局阈值和动态阈值,完成对阈值矩阵的构造和图像的分割。
【Abstract】 The global threshold may not work well for image segmentation with small objects. The image segmented by single dynamic threshold usually contains interference like shadow. The gray image segmentation is a process that the image is labeled after an unsupervised clustering by Fuzzy C-Means(FCM). In consideration without increase of computation complexity, we propose an algorithm for gray image segmentation by creating a threshold matrix obtained by global threshold and dynamic threshold that are the FCM clustering results.
【关键词】 模糊C均值;
聚类;
图像分割;
阈值矩阵;
【Key words】 fuzzy C-means; clustering; image segmentation; threshold matrix;
【Key words】 fuzzy C-means; clustering; image segmentation; threshold matrix;
【基金】 国家自然科学基金资助项目(60572011);国家985特色项目(LZ985-231-582627);甘肃省自然科学基金资助项目(YS021-A2-00910)
- 【文献出处】 电子科技大学学报 ,Journal of University of Electronic Science and Technology of China , 编辑部邮箱 ,2006年03期
- 【分类号】TP391.41
- 【被引频次】13
- 【下载频次】283